
Aging Gracefully! Writing Software that Takes Change in Stride

. .,

Introduction

The Nature of Software: Poorly Defined or Changing Requirements
Let’s face it, Being responsible for creating software is a thankless job, I ong hours, little
recognition for your brilliance and ingenuity, and to add ilwult to injury, your already vague
requirements arc changing faster than the O.J. Simpson defense strategy. “1’ve changed my
mind about the interface; 1 want multi-plot graphs with dialog boxes instead, and 1 want you to
change the output to a spreadsheet file and you also need to add the ability to send the data
over the net to my I’C in real-tirne. Have a new version re,idy for me clay after tomorrow. ”
Sound familiar?

The Impact of Changing Requirements for the Unprepared
Such is the nature of software engineering, so we’d better @ used to it, right? Not so fast.
Ma ybc wc can’t do much to teach the I’owcrs That Be about the discipline of engineering, but
what about the long hours and the brilliance part? isn’t there smmfhinx that can be done to
make our programs more resistant to the abuses of fickle n]anagers? Fvcn a well-designed
application running in a stable environment faces alteration if its virtues are live on through the
wonders of code r,cusc. I,ife in LabVIEWland cerlainly helps in keeping up with the presto-
chango needs of a dynamic projecl, but a poor design approach can have yoL] scouring diagrams
all night trying to propagate the effects of that last change, Or worse yet, having the angry
stares of seven impatient team members burning a hole in your back as the phrase “Are yOLI
done yet?” keeps ringing in your ears.

The Value of Designing Code to Handle Change Gracefully
Now, if wc were to work smarter, not harder, we would a]~ply our brilliant ingenuity to craft an
architecture that handles weekly design changes with complete aplomb. Code reuse cou]d
become so effective for LIS, we’d have half the code done before the next version enters the
vaporware stage. Capturing requirements into running code would procccd so smoothly, we’d
get ahead of the rest of the team and have Project curtail the show to keep the software people
from leading the hardware design. Sound like ridiculous fantasy? Surprise! Each of these
things has actually happened in m y group at J1’L,’s Measurement 2 ‘cchnology Center. YOLI can
do it, too. It’s all a matter of knowing how to usc your tools to implement good software
engineering principles. Planning for change and few defe] Isive design st rategics can make yOLI
the project hero instead of the scapegoat.

Strategies & Techniques for Creating Flexible, Robust Code
By no means an exhaustive treatise on the subject, the following principles have been found
useful in guiding code development to produce flexible, robust architectures. The overall
philosopy is to take a consistent, methodical approach to diagram construct ion. Develop each
panel with a thought about which elements express an ess[mtial architectural feature and which
are actually just a specific parameter that might move around when the hardware manager
decides he wants “the digital bus multiplexed instead and a new A/l] installed with 14 bits, not
12.” Modularize and document rationale as you go with tile notion that three years from now
yOLI will be dragged out of your sleep in the middle of the night to come in and perform
emergency surgery on YOUR code and save the company’s shareholders. (Or to rescue that
occasional errant spacecraft.) Think of it as “7,cn and the Art of Code hiaintcnance.”

. .

Follow a Modular/Hierarchical Approach
Onc of the best architecture-level design principles to follow that wil I make functional changes
mercifully easy to deal with and turn the code reuse holy grail into reality is to develop your
application as a hierarchy of modular elements. LabVIEW is a natural for graphically capturing
a set of requirements in the venerated data flow represents t ion, hierarchical bubble charts and
all. Ilxign quickly follows in eithcx a top-down or bottom-up (or both) approach as elements
resolve themselves into greater detail with the choices of data types, structures, and library VIS
made at each level. Our little secret, of course, is that once we’ve whipped up a CASE tool
product that would traditionally be passed along to the coding team for ill~]>le]l~e]~tatiol~, wc
smugly click the run button and hand the output data to tl w customer instead. (After all, “Rcal
men draw their code,” right?)

Restrict the scope of each VI
(lnc of the most painful mistakes 1 see LabV1t3W hackers struggle with is what I gently refer to
as the “ltalian style of software development” (spaghetti code). Wires going every which way
and a diagram half the size of Manhattan and twice as con ~plicated as the l’entagon’s plumbing.
Give me a break. Learn to restrict the scope of each VI to do no more than one specific task you
can sum up in the one or two sentences of documentation you’re dutiful I y typing into the corner
of each diagram. This is the principle of cohesio}~; if it doesn’t contribute to a module’s function,
move it to where it logically belongs.

Use the 7 +/-2 rule of thumb for limiting the complexity of panels
Psychologists have long known what the hapless developm senses in his gut when faced with
modifying his wonderous I.abVIEW mega-panel: Human brains are equipped to handle at most
seven items at once, give or take a few. Respect this cognitive limitation and keep the
complexity of your panels to a manageable level. There’s no honor lost in having a VI with only
three or four objects on the diagram. (Besides, these are easiest to modify and get the most
reuse later.)

Avoid cnnbcdding multiple copies of the same functionality
Another common mistake 1 often see is the cookie-cutter approach to common functionality.
Sure, it’s easy to select a block of code in 1.abVIt3W and dlag it over tc) the next panel. Viola!
instant copy of a debugged routine; wire it in and off we so... Such expediency has its price
when mods are needed to this common code. Successful software engineering is not
synonymous with making bet ter pastry. To paraphrase tl ~e old oil filter commercial, “You can
pay me now or pay me later wifh interest and pemlfics.” If you need the same process over here,
too, then take the time to drop it into a sub-VI and maintain only one piece of code. (Word on
the street has it that an up and coming vesion of L,abVIEW will make this process a snap.)

Bc general & generic at the bottom, Get more specific as you go up
Finally, don’t modularize haphazardly; take a logical, hierarchical approach. 1 often follow both
a top-down and a bottom-up approach simultaneously. At the bottom, define drivers and basic
processing steps that are completely generic, containing nothing specific to your application.
These will be heavily reused and should form the basis of your software reuse library. Keep
that in mind as you design them. A glance at the diagran ls of the lowest level Vls should
answer the question, “How... ” very well but the question ‘Why... ” not at all. Build a layer of
VIS above which are more abstract and call these as sub-\rls to provide the details. Continue on
to the next layer, becoming more distant from implementation details and more specific to the
needs of the application as you go up,

At the top, concentrate on a simple diagram to answer the very application-specific question
“What,..” but give no CIUC as to “How...” Your 7 +/-2 sub-VIs here will provide more “how”
details and 10SC some of the “what” flavor. F]ere it’s important to dil’ide your hierarchy
cohesively, with the resulting trees of VI calls being as loosely coupled to each other as possible.

l“”

(It’s unfortunate that the View Hierarchy panel LabVIEW 3 provides cannot be manipulated to
better visualize the program structure. It would become a genuinely useful form of
documentation. Perhaps NI will add this capability in LabVIEW 4?) in the middle you will
meet your bottom-up products as elegant calls to carry out the processing needed above.
(“Make it so, Number 1 !“)

The Proper Use of Globals and Enums
One of the most convenient additions to LabVIEW 3 is globals; it saves us the effort of hand-
coding ersat~ global function Vls in each application. Object-oriented purists sneer at the
concept of a global VI in the same way structured language purists react derisively to the word
“goto.” Ignore these people. Globals are hereto stay and you’re the big winner, especially
when modification time comes around and you’re in the hot seat to crank out Version 2.

The value of using globals in software design
What’s the big deal with globals and how do I use them a]lyway? In a word, Pamt~icfers. in a
phrase, Front Pared controls n}~d indicators processed i?~ renlofc sub-VJs. Globals let you
parametrize on a global scale much as front pane] controls and indicators let yOLI parametrize
a sub-V] call. Globals let you stuff a value into a pidgeon hole and pLIll it back out again at a
later time, in another place. Globals area great way to deal with constants and variable
parameters in your code. Because, as you will learn soorwr or later, a constant is not a constant
to a software task manager. And when it comes to making changes down the road, do you
really remember what that “2” passed to the SUI>-VI really n~eans?

Variables vs. symbolic & manifest constants
I’o understand the proper way to apply globals in your design, we ncecl to make the distinction
between a symbolic constant and a manifest constant. A symbolic cons[ant is the meaningful
symbol (read “l>escriptive Native Language Phrase”) which is associated with a datum that a V]
interprets in performing its function. These are the values that are supposed to be constant, so
you naturally hard-code them into your diagrams with o]te of the constant objects and then type
in a value. Then you clone them all over your application] I. You know, tl-w same ones that you
have to go back and carefully search through all your diagrams to adjust a week later because
there was this chfwgc... Don’t embed “magic numbers”in your software. I jefine a global, put
the value on its panel and make it the default, and clone (he Read Global VI to access this value
throughout your code. Give it a descriptive name so you will know exactly what it means and
why it’s there. The readability of your code will increase exponentially. It’s like.., magic.
We need to distinguish as ymbolic constant from a variat de and a manifest constant. A variable
is no different from what we’ve described above, except that we reserve the right to change the
value from time to time. In this case, we assign an initial or defau]t value to the global during
program initial ization, and write new values when and where appropriate. And lest we take
this symbolic stuff a bit too far, we recognize that there are some constants which are truly
constant and make the most sense when expressed as a number. Accessing the first element of
an array with index O, shifting a ‘1’ to make a bit mask, or dividing by 2 are good examples.
Don’t overdo a good thing.

Using Mmms and Rings instead of symbolic consfants
A global is not always the most appropriate choice to shi ft crypt ic numbers into meaningful
symbols. If the actual values of a parameter are constant and limited in number, consider using
an enum or a ring. If the values are meaningful to the code but not to the human reader, then
use a di~ital text ring to represent the parameter. If the values are arbitrary, but only need to bc
unique for each case, then select an enum. The advanta~e of an enum really shines when you
use it to control a case statement: The symbolic labels a])pcar as each case name automagica]ly.
The downside of emums rears its ugly head if you try to extend one across an application and
then have to change it later. You’ll have to laborious y fi x each refercncc in the code. Use a

digital ring or global instead; no nifty case labels, but the numbers adjust to the change nicely.
Enums are best used in a local scope (i.e., within a single subVl).

Text string globals for dialogs & panels
C)nc slick usc of globals is to symbolically reference text stl ings used in dialogs, on front panels,
and in files. Create a text string global with a control for each string, type’ in the text for each,
and make them the default values. Use the string in the p] ogram by reading the global instead
of a string constant, You have all your strings in one place, allowing you to make quick and
complete changes to move from development to itnpleme] ltation versions, adapt the code to a
new application, or even to change languages for an multi] ingual delivery.

Use of Arrays & Clusters
An important technique for generating flexible code is to make intelligel~t use of LabVIFIW’s
array and cluster capabilities. Most of us are familiar with array basics, but not everyone has
figured out clusters yet.

The value of I.abVIIIW’s variable-size arrays
Structuring your data to naturally capture an expression ill array form is almost always a good
idea. LabVIEW excels in processing data in the form of an array, with many handy library
functions for manipulating array data. Learn what they are and how to usc them. You will then
start seeing your data and structures in these forms and naturally chose the best architectures.
Diagrams and structures will bc simple and concise, and bc easier to modify. A vahlable aspect
of LabVIEW’s arrays is their variable sizing. Leverage this characteristic to make your code
insensitive to changes through expression in array form and the avoidance of any hard-coded
array sizes. Many times I have had to alter the sixes of str~lctures on a global scale, or even
worse, had to have the code do so on the fly (dynamic allocation) and didn’t even think twice
about whether my 120 or so sub-VIs would tolerate such a change. ‘l’hey just... worked. I
played.

Using clusters for encapsulation of disparate data types
Clusters arc used to encapsulate a cohesive set of disparate data types, which are stored,
processed, or transported as a group. Clusters reduce clut tcr and visual comp]cxity, especial] y
when it comes to wiring icons together. Think of thcm as way to hierarchically collapse a
bundle of wires into one wire, much like you do with structuring sub-Vis. ~’he key to using
thcm successfully is to keep them highly cohesive and loosely coupled. If you’re packing the
kitchen sink into your ch]sters, you’re abusing the concept. If you find yourself splitting off
parts of different structures and combining them to get your data processed, yoLl need to revisit
your design.

Why clusters should (almost) always be referenced by name
Most developers that I see who are using clusters are usins the degenerate form, the basic
c]ustcr, to bundle and unbundle their data. A much safer (and better documented) approach is
to use the bundle and unbundle by name VIS instead. This is especially true in a changing code
environment, since accessing your cluster fields by name cloes not need any modification if the
cluster later has elements added or removed. This approach also reduces diagram clutter by
allowing yOLI to show only the cluster elements that are relevant. It improves readability when
you use a meaningful phrase name for the fields, And it provides for an elegant means of
implementing a parametric architecture for data more con lplicated than a simple global. And as
with manifest constants, there will always be the occasional case where an unnamed cluster is
the most sensible choice.

,, .

Parametric Architectures
Parametric what? What is a parametric architecture and should I care? Simply put, it is the
complete application of the principles presented here, with the changeable elements located in
one place, such as a file or a global panel. You should care because employing this design
technique can provide some of the greatest insensitivity to change and it makes code much more
readiblc. It also allows for practical code reuse of more complex rcmtines and opens the door
for more advanced behavioral tricks such as parameter files, scripting, and table-driven
architect ures,

How parametric design works
A parametric design presumes that all the symbolic constants, array sizes, files referenced, text
strings displayed, and even sequences of code executed may be called upon to vary in value,
size, amount, order of execution, etc. These choices may depend upon decisions made at
compile time by a manager, at run time by an operator, or in response to data acquired during
execution. By controlling these characteristics thlough pal ameters, restructuring at this level
involves little more than adjusting the value of a few paralneters and re-running the code with
little concern for its impact. That is, other than to absorb the “wow” and “geIzius!” comments
you’ll get from the team members who thought they’d just torpedoed your weekend plans with
a new spec to recode.

Configuration & Default Parameter Files
C)nce a parametric approach has been chosen, some valual)le programming tricks become
available. Using files to store configuration parameters and default values is one of them.
Storing the parameters that control the internal structure c)f your applicat ion in a file means that
changes can be made to the program without editing the VIS, a move which tends to put
software managers’ minds at ease. It also naturally makes the code more resusable. Many
applications in the data acquisition world have remarkable similarities which don’t really need
to be reinvented for every new task. They just need to be Iurilt once, intelligently, and then have
their parameters tweaked to suit the next job.

Table-Driven or Script-Driven Behavior
A more advanced technique carries this concept further. More sophisticated behavioral control
can bc exercised without code modifications through the use of table-driven or script-driven
architectures. l’his means using LabVIEW to develop a lal~guage which interprets a table or a
text file containing parameters and procedural elements to carry out its tasks. It amounts to
trading the general but unstructured nature of the LabV1liW environment for one that only
knows how to carry out common primitive tasks but needs less programming to do so. We are
having great success using these architectures to allow system testers to write, run, and modify
their own procedures with little risk of software rewrites to handle their next brilliant test idea.

Defensive Architecture Strategy
Without sounding paranoid, a lot of what goes into making an architecture resistant to change is
to take a defensive attitude with the customer. After all, the farther along a project gets when a
boo-boo is discovered and needs recoding, the more costly it becomes. Spending a little extra
time on your part to design in a safety net not only provides valuable insurance down the road,
but also gives yOLI a satisfying outlet for all that pent-up brilliant ingenuity you’ve been wanting
to express.

Be familiar with the application domain
(Jw way to get an edge on controlling the destiny of you~ code is to be as familiar with the
application domain as you can. Knowing the finer distinctions of the system your software is
part of provides you with the insight you need to anticipate where the changes are likely to
occur. This insight should guide your choice of architecture and assist you in picking out the

parameters. Take the attitude that if it might change, it probably will, so have the solution in
your back pocket ready to go. It’s not wasted effort as much as it’s a good habit to follow.

Consistency, Standards, and Code Reuse

Consistency is key; Discipline leads to consistency
Some genera] principles bear mentioning here. The overall philosophy behind any successful
software cnginccring task is consistency and discipline. I,ack of either one is what gets us in
t rcmb]e. Soflware is a powerful engineering tool, but as wi th anything powerful, there’s the
other edge that cuts in your direction, too, The flexible nature of software may make it possible
to capture whatever whim hits you, but this nature also makes it easy for you to end up with a
hopeless mess. Be vigilant against letting sloppiness, laziness, or expediency creep into your
craft. Llisciplinc is the foundation for consistent approaches and consistent approaches yield
predictable, maintainable results, Your reputation and caj cer rest on your results.

Use standard approaches for typical tasks
Once your mind has been trained to recognize the essential form of the various tasks and
subtasks you deal with, you should begin to see things not as how they are different from one
another, but how they are the same. Capitalize on this san~encss to generate a code reuse
library, design with parameters, and employ standards in structure, documentation, style, and
appearance.

Reuse low-level modules that perform common tasks
With experience gained from abstracting the commonality among simila) types of tasks, you can
shrink the amount, and therefore complexity, of your cod(. Package the abstracted form into a
sub-v] and reference it this way, in some cases even if it is on]y Ca]]ed from one]Ocation. one
change covers all references, whether in structure or location. It also makes it possible to
substitute emulators or stubs, parlit ion tasks among a teal n, or make major behavioral changm
without making a ncw program.

Design modules with thought to using them in other projects
Finally, design every module with the thought of having to reuse it down the road in another
project. (M that you or your buddy is going to have to modify it and maintain it later. YoL~
never really know what you’re going to encounter in the future, (C)K, if yOLI do, you have an
interminably boring job which you should quit immediately.)

Documentation

The last word on software cngincwring? Documcmtation. Yikes! Yes. L)ocumentation can be
your friend. Your good and only friend when you’re undrr the gun to fix the code you wrote
eleven months and 14 projects ago. “But,” I hear you say, “LabVIEW is self-documenting.”
Yeah, right. You tell me that when you’re staring at somebody else’s spagetti plate special with
the job of making it go. Employing the principles I’ve outlined above certainly makes LabVIEW
mow self-documenting, but nothing takes the place of text boxes liberally sprinkled about a
diagram, explaining why certainly structures anti data ty}lcs were chosen and what the
consequences of modification would be. Remember: The reputation you save could bc your
own.

